Skip to contents

In this vignette we exemplify a workflow to correct for a batch effect induced by performing experiments (including cell preparation, staining and recording of flow cytometry data) on different dates. The example data set used in this vignette consists of peripheral blood mononuclear cells (PBMCs) from healthy donors.

1 cyCONDOR dimensionality reduction workflow

This first part describes the general cyCONDOR data processing and dimensionality reduction workflow (see vignettes("Data loading and transformation") and vignettes("Dimensionality Reduction") for more details) until the closer inspection of the data set and identification of a technical batch effect.

Loading the data

We start by loading the data.

condor <- prep_fcd(data_path = "../../../Figure 3 - Batch Correction/data/CureDem/all/",
                   max_cell = 500,
                   useCSV = FALSE,
                   transformation = "auto_logi",
                   remove_param = c("Time", "FSC-H", "SSC-H"),
                   anno_table = "../../../Figure 3 - Batch Correction/data/CureDem/all.csv",
                   filename_col = "filename"
)

# set the date as factor for visualization purposes
condor$anno$cell_anno$exp <- as.factor(condor$anno$cell_anno$exp)

Dimensionality Reduction

Next, we perform dimensionality reduction calculating the principal components (PCs) and the UMAP based on the PCs.

condor <- runPCA(fcd = condor, 
                 data_slot = "orig")

condor <- runUMAP(fcd = condor, 
                  input_type = "pca", 
                  data_slot = "orig")

Inspection of batch effect

We can now visualize the batch effect in this data set by plotting the UMAP coordinates and coloring the cells by the experiment date.

plot_dim_red(fcd= condor,  
             reduction_method = "umap", 
             reduction_slot = "pca_orig", 
             param = "exp", 
             title = "Original UMAP")

plot_dim_red(fcd= condor,  
             reduction_method = "umap", 
             reduction_slot = "pca_orig", 
             param = "exp", 
             title = "Original UMAP",
             facet_by_variable = TRUE)

2 Batch correction

Within the cyCONDOR ecosystem we implemented harmony and CytoNorm for batch correction. The correction can be applied either to the protein expression values (fluorescence intensities) or to the principal components. There is no ‘magic bullet’ for batch correction and each of these methods needs to be used with care to correct for the batch effect but not the underlying biological effects. Therefore, each of the here described methods should always be validated by inspecting the expression of hallmark markers.

If you use this workflow in your work please consider citing cyCONDOR and harmony or CytoNorm.

2.1 Correct Principal Components

To use the harmony algorithm for correcting the principal components, we use the harmonize_PCA() and define the batch variable batch_var, in this example the experiment date ‘exp’.

condor <- harmonize_PCA(fcd = condor, 
                        batch_var = c("exp"), 
                        data_slot = "orig")
## Transposing data matrix
## Initializing state using k-means centroids initialization
## Harmony 1/10
## Harmony 2/10
## Harmony 3/10
## Harmony 4/10
## Harmony 5/10
## Harmony 6/10
## Harmony 7/10
## Harmony converged after 7 iterations

The harmonized PCs are saved in condor$pca$norm.

condor$pca$norm[1:10, 1:5]
##                                                                           PC1
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_1  -1.1366675
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_2   3.6644012
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_3   2.4084209
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_4   0.2216334
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_5   3.7184420
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_6   3.7217632
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_7   2.4474169
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_8  -2.7793225
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_9   1.8133915
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_10  4.0265809
##                                                                           PC2
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_1  -3.4624610
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_2   1.4990914
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_3  -0.2008533
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_4  -1.0498486
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_5  -0.1274135
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_6   0.7872670
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_7   1.1856915
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_8   1.0500470
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_9  -2.3469980
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_10  0.6143970
##                                                                           PC3
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_1  -1.6953916
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_2   0.3315178
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_3   0.5562826
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_4  -0.1512992
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_5  -0.1128416
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_6   0.5681361
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_7  -0.7625211
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_8  -0.6801728
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_9  -1.0648298
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_10  0.7935678
##                                                                            PC4
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_1   1.88612893
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_2  -0.71703164
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_3   2.50713060
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_4   0.81109320
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_5   0.80766039
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_6   0.72652862
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_7   0.60679898
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_8  -0.84180911
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_9   0.21054986
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_10 -0.06402865
##                                                                            PC5
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_1   0.95925264
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_2   0.27537428
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_3   1.46456636
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_4  -2.28436215
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_5   1.21457968
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_6  -0.35067378
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_7   1.11939274
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_8   0.72285975
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_9  -1.69663626
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_10  0.03348906

Repeat dimensionality reduction

We can now recalculate the UMAP based on the harmonized PCs. For this we select input_type = "pca" and data_slot = "norm".

condor <- runUMAP(fcd = condor, 
                  input_type = "pca", 
                  data_slot = "norm",
                  prefix= NULL)

Unless a prefix has been set, the new UMAP coordinates calculated based on the harmonized PCs can be accessed via condor$umap$pca_norm.

condor$umap$pca_norm[1:5,]
##                                                                       UMAP1
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_1 -3.707570
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_2 -4.884564
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_3 -5.692166
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_4 -6.726507
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_5 -6.848187
##                                                                        UMAP2
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_1 -12.651143
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_2  10.020984
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_3   7.914641
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_4  -3.255706
## 20230322_AB_20220406_DH_193223821_193363_E2_Live_cells_comp.fcs_5   7.687574

Visualization of the data integration results

UMAP

For a first inspection of the data integration, we can visualize the results by plotting the new UMAP coordinates and coloring the cells by the experiment date. The UMAP shows no strong separation of the cells by the experiment date anymore. To further inspect the data integration results, the expression of cell type lineage markers should be assessed. This is highly dependent on the markers measured in the flow cytometry data set and therefore not included in this vignette.

plot_dim_red(fcd= condor,  
             reduction_method = "umap", 
             reduction_slot = "pca_norm", 
             param = "exp", 
             title = "Harmonized UMAP")

plot_dim_red(fcd= condor,  
             reduction_method = "umap", 
             reduction_slot = "pca_norm", 
             param = "exp", 
             title = "Harmonized UMAP",
             facet= TRUE)

LISI score

To further inspect the data integration result, we can calculate the Local Inverse Simpson’s Index (LISI) score. The LISI score can be used to assess the degree of mixing among the cells from the different batches in the UMAP space.

#prepare pre batch correction data set
pre_batch <- cbind(condor$umap$pca_orig, condor$anno$cell_anno)
#calculate LISI score for batch variable 'exp'
res_pre <- compute_lisi(pre_batch[,c(1,2)], pre_batch, c('exp'))
colnames(res_pre) <- "lisi"
#combine LISI score with cell annotation
lisi_mat_pre <- cbind(pre_batch, res_pre)
lisi_mat_pre$type <- "pre"

#prepare ppost batch correction data set
post_batch <- cbind(condor$umap$pca_norm, condor$anno$cell_anno)
#calculate LISI score for batch variable 'exp'
res_post <- compute_lisi(post_batch[,c(1,2)], post_batch, c('exp'))
colnames(res_post) <- "lisi"
#combine LISI score with cell annotation
lisi_mat_post <- cbind(post_batch, res_post)
lisi_mat_post$type <- "post"

#combine pre and post batch matrices 
lisi_mat <- rbind(lisi_mat_post, lisi_mat_pre)
lisi_mat$type <- factor(lisi_mat$type, levels = c("pre", "post"))

#visualization 
p <- ggplot(data = lisi_mat, aes(y = lisi, x = type, fill = type)) +
  geom_jitter_rast(alpha = 0.01, scale =0.5) +
  geom_violin(alpha = 0.8) +
  scale_fill_manual(values= c("#1C75BC", "#BE1E2D"))+
  theme_bw() +
  theme(aspect.ratio = 2, panel.grid = element_blank(),
        text= element_text(size=16, color= "black")) + 
  xlab("")+
  ylab("LISI score")
p

2.2 Correct fluorescent intensities

As an alternative to correcting the embedding, the fluorescent intensities can be directly corrected using harmony or CytoNorm. However, direct correction of fluorescence intensities should be used with caution, if biological differences between groups or conditions are planned to be compared in the downstream analysis.

Correct fluorescent intensities with harmony

To use the harmony algorithm for correcting the intensities, we use the harmonize_intensities() and define the batch variable batch_var, in this case ‘exp’.

condor <- harmonize_intensities(fcd = condor, 
                                batch_var = c("exp"))
## Transposing data matrix
## Initializing state using k-means centroids initialization
## Harmony 1/10
## Harmony 2/10
## Harmony 3/10
## Harmony converged after 3 iterations

The harmonized intensities are saved in condor$expr$norm.

Correct fluorescent intensities with CytoNorm

Another approach for correcting the fluorescence intensities is the application of the CytoNorm algorithm within the cyCONDOR ecosystem. For a detailed description of CytoNorm see Van Gassen et al., 2019.

As a first step, the batch effect is learnt from reference samples provided by the user. The control samples should contain the whole range of expression values of the markers in the panel. For example in the case of a stimulation experiment including unstimulated and stimulated samples as control samples improved estimation of the batch effect (Van Gassen et al., 2019). Ideally the samples used as reference samples were stained and recorded along the other samples within each batch. Depending on your data set, it is also possible to use all samples contained in your data set as reference samples to train the model and learn the differences between the batches as shown in the example below.

Training the model

Here, a model is trained on all samples contained in the data set. For this we need to provide the name of the batch variable batch_var and optionally parameters which should not be included for the training as well as different parameters for clustering the cells with FlowSOM (FlowSom_param). Here, we use all markers present in the fcd and perform the training with the default parameters for FlowSom_param. The number of desired FlowSOM metaclusters is defined by nClus and should be adjusted according to your data set, see Van Gassen et al., 2019 for more details.

condor <- train_cytonorm(fcd = condor,
                         batch_var = "exp",
                         remove_param = NULL,
                         FlowSOM_param = list(nCells = 5000, xdim = 5, ydim = 5, nClus = 10, scale = FALSE), 
                         seed = 91)
Normalization of data with trained model

Next the trained model saved within your fcd is used to normalize all samples present in your fcd. The fcs files with the normalized expression values can be saved, if keep_fcs is set to TRUE.

condor <- run_cytonorm(fcd = condor,
                       files = NULL,
                       batch_var = "exp",
                       keep_fcs = FALSE)
## start normalization
## adding normalized expression data to fcd
## removing temporary fcs files

Session Info

info <- sessionInfo()

info
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Etc/UTC
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] lisi_1.0       ggrastr_1.0.2  ggplot2_3.4.4  cyCONDOR_0.2.1
## 
## loaded via a namespace (and not attached):
##   [1] IRanges_2.34.1              Rmisc_1.5.1                
##   [3] urlchecker_1.0.1            nnet_7.3-19                
##   [5] CytoNorm_2.0.1              TH.data_1.1-2              
##   [7] vctrs_0.6.4                 digest_0.6.33              
##   [9] png_0.1-8                   shape_1.4.6                
##  [11] proxy_0.4-27                slingshot_2.8.0            
##  [13] ggrepel_0.9.4               parallelly_1.36.0          
##  [15] MASS_7.3-60                 pkgdown_2.0.7              
##  [17] reshape2_1.4.4              httpuv_1.6.12              
##  [19] foreach_1.5.2               BiocGenerics_0.46.0        
##  [21] withr_2.5.1                 xfun_0.40                  
##  [23] ggpubr_0.6.0                ellipsis_0.3.2             
##  [25] survival_3.5-7              memoise_2.0.1              
##  [27] hexbin_1.28.3               ggbeeswarm_0.7.2           
##  [29] RProtoBufLib_2.12.1         princurve_2.1.6            
##  [31] profvis_0.3.8               ggsci_3.0.0                
##  [33] systemfonts_1.0.5           ragg_1.2.6                 
##  [35] zoo_1.8-12                  GlobalOptions_0.1.2        
##  [37] DEoptimR_1.1-3              Formula_1.2-5              
##  [39] prettyunits_1.2.0           promises_1.2.1             
##  [41] scatterplot3d_0.3-44        rstatix_0.7.2              
##  [43] globals_0.16.2              ps_1.7.5                   
##  [45] rstudioapi_0.15.0           miniUI_0.1.1.1             
##  [47] generics_0.1.3              ggcyto_1.28.1              
##  [49] base64enc_0.1-3             processx_3.8.2             
##  [51] curl_5.1.0                  S4Vectors_0.38.2           
##  [53] zlibbioc_1.46.0             flowWorkspace_4.12.2       
##  [55] polyclip_1.10-6             randomForest_4.7-1.1       
##  [57] GenomeInfoDbData_1.2.10     RBGL_1.76.0                
##  [59] ncdfFlow_2.46.0             RcppEigen_0.3.3.9.4        
##  [61] xtable_1.8-4                stringr_1.5.0              
##  [63] desc_1.4.2                  doParallel_1.0.17          
##  [65] evaluate_0.22               S4Arrays_1.0.6             
##  [67] hms_1.1.3                   glmnet_4.1-8               
##  [69] GenomicRanges_1.52.1        irlba_2.3.5.1              
##  [71] colorspace_2.1-0            harmony_1.1.0              
##  [73] reticulate_1.34.0           readxl_1.4.3               
##  [75] magrittr_2.0.3              lmtest_0.9-40              
##  [77] readr_2.1.4                 Rgraphviz_2.44.0           
##  [79] later_1.3.1                 lattice_0.22-5             
##  [81] future.apply_1.11.0         robustbase_0.99-0          
##  [83] XML_3.99-0.15               cowplot_1.1.1              
##  [85] matrixStats_1.1.0           RcppAnnoy_0.0.21           
##  [87] xts_0.13.1                  class_7.3-22               
##  [89] Hmisc_5.1-1                 pillar_1.9.0               
##  [91] nlme_3.1-163                iterators_1.0.14           
##  [93] compiler_4.3.1              RSpectra_0.16-1            
##  [95] stringi_1.7.12              gower_1.0.1                
##  [97] minqa_1.2.6                 SummarizedExperiment_1.30.2
##  [99] lubridate_1.9.3             devtools_2.4.5             
## [101] CytoML_2.12.0               plyr_1.8.9                 
## [103] crayon_1.5.2                abind_1.4-5                
## [105] locfit_1.5-9.8              sp_2.1-1                   
## [107] sandwich_3.0-2              pcaMethods_1.92.0          
## [109] dplyr_1.1.3                 codetools_0.2-19           
## [111] multcomp_1.4-25             textshaping_0.3.7          
## [113] recipes_1.0.8               openssl_2.1.1              
## [115] Rphenograph_0.99.1          TTR_0.24.3                 
## [117] bslib_0.5.1                 e1071_1.7-13               
## [119] destiny_3.14.0              GetoptLong_1.0.5           
## [121] ggplot.multistats_1.0.0     mime_0.12                  
## [123] splines_4.3.1               circlize_0.4.15            
## [125] Rcpp_1.0.11                 sparseMatrixStats_1.12.2   
## [127] cellranger_1.1.0            knitr_1.44                 
## [129] utf8_1.2.4                  clue_0.3-65                
## [131] lme4_1.1-35.1               fs_1.6.3                   
## [133] listenv_0.9.0               checkmate_2.3.0            
## [135] DelayedMatrixStats_1.22.6   pkgbuild_1.4.2             
## [137] ggsignif_0.6.4              tibble_3.2.1               
## [139] Matrix_1.6-1.1              rpart.plot_3.1.1           
## [141] callr_3.7.3                 tzdb_0.4.0                 
## [143] tweenr_2.0.2                pkgconfig_2.0.3            
## [145] pheatmap_1.0.12             tools_4.3.1                
## [147] cachem_1.0.8                RhpcBLASctl_0.23-42        
## [149] smoother_1.1                fastmap_1.1.1              
## [151] rmarkdown_2.25              scales_1.2.1               
## [153] grid_4.3.1                  usethis_2.2.2              
## [155] broom_1.0.5                 sass_0.4.7                 
## [157] graph_1.78.0                carData_3.0-5              
## [159] RANN_2.6.1                  rpart_4.1.21               
## [161] farver_2.1.1                yaml_2.3.7                 
## [163] MatrixGenerics_1.12.3       foreign_0.8-85             
## [165] ggthemes_4.2.4              cli_3.6.1                  
## [167] purrr_1.0.2                 stats4_4.3.1               
## [169] lifecycle_1.0.3             uwot_0.1.16                
## [171] askpass_1.2.0               caret_6.0-94               
## [173] Biobase_2.60.0              mvtnorm_1.2-3              
## [175] lava_1.7.3                  sessioninfo_1.2.2          
## [177] backports_1.4.1             cytolib_2.12.1             
## [179] timechange_0.2.0            gtable_0.3.4               
## [181] rjson_0.2.21                umap_0.2.10.0              
## [183] ggridges_0.5.4              parallel_4.3.1             
## [185] pROC_1.18.5                 limma_3.56.2               
## [187] jsonlite_1.8.7              edgeR_3.42.4               
## [189] RcppHNSW_0.5.0              bitops_1.0-7               
## [191] Rtsne_0.16                  FlowSOM_2.8.0              
## [193] ranger_0.16.0               flowCore_2.12.2            
## [195] jquerylib_0.1.4             timeDate_4022.108          
## [197] shiny_1.7.5.1               ConsensusClusterPlus_1.64.0
## [199] htmltools_0.5.6.1           diffcyt_1.20.0             
## [201] glue_1.6.2                  XVector_0.40.0             
## [203] VIM_6.2.2                   RCurl_1.98-1.13            
## [205] rprojroot_2.0.3             gridExtra_2.3              
## [207] boot_1.3-28.1               TrajectoryUtils_1.8.0      
## [209] igraph_1.5.1                R6_2.5.1                   
## [211] tidyr_1.3.0                 SingleCellExperiment_1.22.0
## [213] labeling_0.4.3              vcd_1.4-11                 
## [215] cluster_2.1.4               pkgload_1.3.3              
## [217] GenomeInfoDb_1.36.4         ipred_0.9-14               
## [219] nloptr_2.0.3                DelayedArray_0.26.7        
## [221] tidyselect_1.2.0            vipor_0.4.5                
## [223] htmlTable_2.4.2             ggforce_0.4.1              
## [225] CytoDx_1.20.0               car_3.1-2                  
## [227] future_1.33.0               ModelMetrics_1.2.2.2       
## [229] munsell_0.5.0               laeken_0.5.2               
## [231] data.table_1.14.8           htmlwidgets_1.6.2          
## [233] ComplexHeatmap_2.16.0       RColorBrewer_1.1-3         
## [235] rlang_1.1.1                 remotes_2.4.2.1            
## [237] colorRamps_2.3.1            Cairo_1.6-1                
## [239] ggnewscale_0.4.9            fansi_1.0.5                
## [241] hardhat_1.3.0               beeswarm_0.4.0             
## [243] prodlim_2023.08.28