Train a machine learning model to transfer cell labels (this function implements the caret
workflow)
Usage
train_transfer_model(
fcd,
input_type,
data_slot,
cluster_slot,
cluster_var,
method = "knn",
tuneLength = 5,
trControl = caret::trainControl(method = "cv"),
seed = 91
)
Arguments
- fcd
flow cytometry dataset.
- input_type
Data to use for the calculation of the UMAP, e.g.
expr
orpca
.- data_slot
Name of the
input_type
data slot to use e.g.orig
, if no prefix was added.- cluster_slot
string specifying which clustering slot to use to find variable specified in
cluster_var
.- cluster_var
string specifying variable name in
cluster_slot
that identifies cell population labels to be used (e.g. clusters or metaclusters).- method
A string specifying which classification or regression model to use, by default
method = "knn"
. Seetrain
for possible values.- tuneLength
An integer denoting the amount of granularity in the tuning parameter grid, default
tuneLength = 5
.- trControl
A list of values that define how this function acts, default
trControl = caret::trainControl(method = "cv")
. SeetrainControl
and <http://topepo.github.io/caret/using-your-own-model-in-train.html>.- seed
A seed is set for reproducibility.