Skip to contents

plot_confusion_HM() generates a heatmap showing the contribution of each group_var to a cell population after normalizing all levels in group_var to the same cell numbers.

Usage

plot_confusion_HM(
  fcd,
  cluster_slot,
  cluster_var,
  group_var,
  numeric = FALSE,
  size = 15,
  title = "Confusion matrix",
  cluster_cols = FALSE,
  cluster_rows = FALSE
)

Arguments

fcd

flow cytometry data set, that has been subjected to clustering or cell type label prediction with cyCONDOR

cluster_slot

string specifying which clustering slot to use to find variable specified in cluster_var

cluster_var

string specifying variable name in cluster_slot that identifies cell population labels to be used to calculate the confusion.

group_var

string indicating variable name in cell_anno that should be used to calculate the relative contribution to the variable specified in cluster_var.

numeric

logical, indicating if levels in cluster_var should be ordered in ascending numerical order.

size

size of the individual squares and font

title

character string, title of the plot.

cluster_cols

logical indicating if columns should be clustered (default: FALSE)

cluster_rows

logical indicating if rows should be clustered (default: FALSE)

Value

plot_confusion_HM() first calculates cell counts for each combination of group_var and cell population and normalizes the counts to a total of 1000 cells per group_var. Afterwards the percentage of cells coming from each level in group_var is calculated per cell population. The normalization of counts corrects the visualization for differences in total cells (events) measured per group_var.

Details

plot_confusion_HM